8.7 Solving Problems with Exponential and Logarithmic Functions

A Exponential Growth and Decay	Ex 1. Let $f(x) = 4(2^{4x-1})$.
Exponential Growth and Decay may be modelled by a function of the form:	a) Write this relation in the form $f(x) = Ab^{Bx}$.
$A(t) = A_0(b^{kt})$ where <i>t</i> is time A_0 is the initial amount A(t) is the amount at time <i>t</i> <i>b</i> is the base <i>k</i> is a constant depending on the application $A_0 = Exponential Growth$ $A_0 = Exponential Decay$	 b) Write this relation in the form f(x) = Ab^x. c) Write this relation in the form f(x) = A(10^{Bx}). d) Write this relation in the form f(x) = A(3^{Bx}).
B Common Ratio	Ex 2. Show that the following relation is exponential.
The values of the exponential growth function form a geometric sequence: $\frac{y_2}{y_1} = \frac{y_3}{y_2} = \dots = \frac{y_{n+1}}{y_n}$ where $y_1 = f(x_1), y_2 = f(x_2), \dots$	x y 1 2 2 6 3 18 4 54 5 162
and x_1 , x_2 , are in arithmetic sequence.	
C Developing Exponential Growth Formula If r is the increasing rate per year, use: $A(t) = A_0 (1+r)^t$ Indeed $A(1) = A_0 (1+r)^1 = A_0 + rA_0$. If, over a period T, the amount is increasing b times, use: $A(t) = A_0 b^{\frac{t}{T}}$ Indeed $A(T) = A_0 b^{\frac{T}{T}} = bA_0$.	 Ex 3. For each case, find an exponential function that model best the situation. a) The value of a house is increasing by 7% per year. b) The number of bacteria is triple every two hours. c) The number of bacteria is double every five hours.

D Developing Exponential Decay Formula	Ex 4. For each case, find an exponential function that
Exponential Decay may be modelled by a function of the form:	model best the situation.a) The value of a car is decreasing by 5% per year.
$A(t) = A_0(b^{kt})$ or by	
$A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{H}}$	b) The half-life of a radioactive source is 81 years.
where H is half-life	
$A(H) = \frac{A_0}{2}$	
or by $A(t) = A_0 (1 - r)^t$	 c) The luminosity decreases 3 times for each 10cm of depth.
where r is the decreasing rate per year	
$A(1) = A_0 (1 - r)^1 = A_0 - rA_0$	
E Sound Level $L = 10 \log \left(\frac{I}{I_0}\right)$	Ex 5. A whisper has a sound level of 15 dB and a rock concert has a sound level of 120 dB. How many more intense is the rock concert in comparison to a whisper?
where <i>L</i> is the soundness (sound level) in decibels <i>I</i> is the intensity of the sound $I_0 = 10^{-12} W/m^2$ is a constant (intensity of the sound at the threshold of hearing) Note. $L_2 - L_1 = 10 \log(I_2/I_1)$	
F Earthquake Magnitude $M = log\left(\frac{A}{A_0}\right)$ where <i>M</i> is the magnitude of the earthquake <i>A</i> is the amplitude (intensity) of the earthquake A_0 is a constant	Ex 6. In 2017, in Mexico, two earthquakes happened with a magnitude more than 7. One happened on September 7 and had a magnitude of 8.2 and the other happened on September 19 and had a magnitude of 7.1. How many times was the amplitude of the September 7 earthquake greater in comparison to the amplitude of the September 19 earthquake?
Note. $M_2 - M_1 = \log(A_2 / A_1)$	
G pH Scale	Ex 7. Lemon juice has a pH of 2.5 and milk has a pH of 9. How many times the hydrogen ions are more
$pH = -\log n$ where	concentrated in lemon juice than in milk.
pH is a number measuring acidity/alkalinity of a substance $n = [H^+]$ is the concentration of hydrogen ions	

Reading: Nelson Textbook, Pages 493-499 **Homework**: Nelson Textbook, Page 499 #1-5, 8, 10, 14, 15, 17, 18