### 8.7 Solving Problems with Exponential and Logarithmic Functions

## A Exponential Growth and Decay

Exponential Growth and Decay may be modelled by a function of the form:

$$
A(t)=A_{0}\left(b^{k t}\right)
$$

where
$t$ is time
$A_{0}$ is the initial amount
$A(t)$ is the amount at time $t$
$b$ is the base
$k$ is a constant depending on the application


## B Common Ratio

The values of the exponential growth function form a geometric sequence:

$$
\frac{y_{2}}{y_{1}}=\frac{y_{3}}{y_{2}}=\ldots=\frac{y_{n+1}}{y_{n}}
$$

where
$y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right), \ldots$
and $x_{1}, x_{2}, \ldots$ are in arithmetic sequence.

## C Developing Exponential Growth Formula

If $r$ is the increasing rate per year, use:

$$
A(t)=A_{0}(1+r)^{t}
$$

Indeed $A(1)=A_{0}(1+r)^{1}=A_{0}+r A_{0}$.
If, over a period $T$, the amount is increasing $b$ times, use:

$$
A(t)=A_{0} b^{\frac{t}{T}}
$$

Indeed $A(T)=A_{0} b^{\frac{T}{T}}=b A_{0}$.

Ex 1. Let $f(x)=4\left(2^{4 x-1}\right)$.
a) Write this relation in the form $f(x)=A b^{B x}$.
b) Write this relation in the form $f(x)=A b^{x}$.
c) Write this relation in the form $f(x)=A\left(10^{B x}\right)$.
d) Write this relation in the form $f(x)=A\left(3^{B x}\right)$.

Ex 2. Show that the following relation is exponential.
$x \quad y$
12
26
318
454
5162ned

Ex 3. For each case, find an exponential function that model best the situation.
a) The value of a house is increasing by $7 \%$ per year.
b) The number of bacteria is triple every two hours.
c) The number of bacteria is double every five hours.

## D Developing Exponential Decay Formula

Exponential Decay may be modelled by a function of the form:

$$
A(t)=A_{0}\left(b^{k t}\right)
$$

or by

$$
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{H}}
$$

where $H$ is half-life

$$
A(H)=\frac{A_{0}}{2}
$$

or by

$$
A(t)=A_{0}(1-r)^{t}
$$

where $r$ is the decreasing rate per year

$$
A(1)=A_{0}(1-r)^{1}=A_{0}-r A_{0}
$$

## E Sound Level

$$
L=10 \log \left(\frac{I}{I_{0}}\right)
$$

where
$L$ is the soundness (sound level) in decibels
$I$ is the intensity of the sound
$I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ is a constant (intensity of the sound at the threshold of hearing)

Note. $L_{2}-L_{1}=10 \log \left(I_{2} / I_{1}\right)$

## F Earthquake Magnitude

$$
M=\log \left(\frac{A}{A_{0}}\right)
$$

where
$M$ is the magnitude of the earthquake
$A$ is the amplitude (intensity) of the earthquake
$A_{0}$ is a constant

Note. $M_{2}-M_{1}=\log \left(A_{2} / A_{1}\right)$

## G pH Scale

$$
p H=-\log n
$$

where
$p H$ is a number measuring acidity/alkalinity of a substance
$n=\left[H^{+}\right]$is the concentration of hydrogen ions

Ex 4. For each case, find an exponential function that model best the situation.
a) The value of a car is decreasing by $5 \%$ per year.
b) The half-life of a radioactive source is 81 years.
c) The luminosity decreases 3 times for each 10 cm of depth.

Ex 5. A whisper has a sound level of 15 dB and a rock concert has a sound level of 120 dB . How many more intense is the rock concert in comparison to a whisper?

Ex 6. In 2017, in Mexico, two earthquakes happened with a magnitude more than 7. One happened on September 7 and had a magnitude of 8.2 and the other happened on September 19 and had a magnitude of 7.1. How many times was the amplitude of the September 7 earthquake greater in comparison to the amplitude of the September 19 earthquake?

Ex 7. Lemon juice has a pH of 2.5 and milk has a pH of 9. How many times the hydrogen ions are more concentrated in lemon juice than in milk.

Reading: Nelson Textbook, Pages 493-499
Homework: Nelson Textbook, Page 499 \#1-5, 8, 10, 14, 15, 17, 18

